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Differential geometry is concerned with studying the geometry of ‘smooth surfaces’. In
this document, we provide an introduction to the classical theory of differential geometry,
where we discuss geometric features of curves and surface in (mostly) three-dimensional
Euclidean spaces. Most prominently, differential geometry is the language of the famous
theory of general relativity, but it has also seen applications in computer graphics, com-
puter vision and, recently, machine learning.

In this course, we assume familiarity with the foundations of multivariable calculus, and
basic linear algebra and analysis. This document constitutes my notes taken from lectures
by Prof. Steven Sivek at Imperial College London.

To be completed. Content will cover up to and including the complete Gauss-Bonnet
theorem.
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§1 Curves
In this document, we focus mostly on regular curves in R2 and R3, and we assume
smoothness for simplicity (although it would be sufficient to assume a finite number of
continuous derivative e.g. C4).
Another note for the reader : while I have tried to provide as much intuition throughout
this document, geometry (at least in R2 and R3) is inherently visual, and as such I would
encourage looking up how the curves and surfaces discussed here actually look like.

§1.1 Curves in Euclidean space
We begin by studying some basic properties of curves in Euclidean space.

Definition 1.1 (Regular Parametrized Curve) — A parametrized curve is a smooth
map φ : [a, b]→ Rn, and it is called regular if φ′(t) 6= 0 for all t.

You should think of a parametrized curve as describing the motion of a particle over
time.
The parameter t plays the role of time, and the derivative φ′(t) is the velocity vector of
the particle at time t. The regularity condition ensures that the particle is always moving
and never comes to rest.

Example 1.2 An example of a regular curve in R2 is a circle parametrized by
φ1 : [0, 2π]→ R2, φ1(t) = (cos t, sin t), is a regular curve.

An example of a regular curve in R3 is given by φ2 : [0, 1]→ R3, φ2(t) = (t2, 1−t, t4).

Example 1.3 The following curves are not regular:

φ3(t) = (t2, t3), φ4(t) = (t2 + t, |t|).

The curve φ3 fails to be regular since φ′3(0) = 0, while φ4 is not differentiable at
t = 0.

Regularity excludes degenerate cases such as constant curves φ(t) = (1, 2, 3), and ensures
that at every point of the curve there is a well-defined tangent line. At the point φ(t0),
the tangent line is L = {φ(t0) + s φ′(t0) | s ∈ R}.
If you imagine travelling along the curve, the tangent vector φ′(t0) points in the direction
you would continue moving at time t0.
In many situations, we are interested not in a specific parametrization, but in the geometric
image of the curve. For example, φ̃1(t) = (cos(2t), sin(2t)) for t ∈ [0, π], traces out the
same circle as φ1, but at a different speed.

Definition 1.4 (Reparametrization) — Let φ : [a, b]→ Rn be a regular curve, and
let f : [c, d] ∼−→ [a, b] be a smooth function with f ′(t) 6= 0 for all t. The curve

φ ◦ f : [c, d]→ Rn, t 7→ φ(f(t)),

2



Krish Nigam (March, 2025) 1 Curves

is called a reparametrization of φ.

Remark 1.5 A reparametrization of a regular curve is again regular, since (φ ◦
f)′(t) = φ′(f(t)) f ′(t), which is nonzero because both factors are nonzero.

Reparametrization corresponds to changing the speed at which we traverse the curve,
possibly reversing direction, but not changing the geometric path itself.
We now focus on properties of curves that do not depend on the chosen parametrization.
To do this, we use the standard inner product on Rn, 〈x, y〉 = ∑n

i=1 xiyi, and the induced
norm |x| =

√
〈x, x〉.

Definition 1.6 (Length of a curve) — The length of a curve φ : [a, b]→ Rn is

L(φ) =
∫ b

a
|φ′(t)| dt.

Remark 1.7 Since we established that the quantity |φ′(t)| is the speed of the
particle at time t, the length of the curve is therefore the total distance travelled.

Proposition 1.8 The length of a regular curve in Rn is invariant under reparametriza-
tion.

Proof. Let ψ = φ ◦ f be a reparametrization of φ, with f ′(t) > 0. Then |ψ′(t)| =
|φ′(f(t))| f ′(t). Hence,

L(ψ) =
∫ d

c
|φ′(f(t))| f ′(t) dt =

∫ b

a
|φ′(s)| ds = L(φ),

where we used the substitution s = f(t).

Since length is invariant under reparametrization, it is natural to look for a particularly
convenient parametrization.

Definition 1.9 (Arclength parametrization) — A curve φ : [a, b]→ Rn is parametrized
by arclength if |φ′(t)| = 1 for all t.

In this case, L(φ) =
∫ b
a dt = b− a, and equivalently, L(φ|[a,t]) = t− a.

Remark 1.10 Parametrizing by arclength means travelling along the curve at unit
speed. The parameter t literally measures the distance travelled along the curve.

Proposition 1.11 Every regular curve φ : [a, b]→ Rn admits an arclength parametriza-
tion.

Proof. Define the arclength function `(t) =
∫ t
a |φ′(s)| ds. Since `′(t) = |φ′(t)| > 0, the

function ` is strictly increasing and invertible.
Let f = `−1, and define ψ = φ ◦ f . Differentiating `(f(t)) = t gives |φ′(f(t))| f ′(t) = 1,
so |ψ′(t)| = 1, as required.
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§1.2 Curvature

Definition 1.12 (Curvature for arclength parametrized curves) — Let φ : [a, b]→ Rn
be a curve parametrized by arclength, i.e. |φ′(t)| = 1 for all t. Define the curvature
vector and curvature by ~κ(t) = φ′′(t), κ(t) = |φ′′(t)|, respectively.

The curvature vector is independent from arclength reparametrization. If ψ(t) = φ(f(t)) is
another arclength parametrization of the same curve, then 1 = |ψ′(t)| = |φ′(f(t))| |f ′(t)| =
1 · |f ′(t)|, so |f ′(t)| = 1, hence f(t) = ±t+C. Differentiating twice gives ψ′′(t) = φ′′(f(t)),
so the curvature vector (and therefore κ) is the same geometric object along the curve,
independent of which arclength parametrization we chose.

Proposition 1.13 (Zero curvature⇐⇒ straight line) Let φ : [a, b]→ Rn be arclength
parametrized. Then κ(t) = 0 for all t if and only if φ traces a straight line.

Proof. Since κ(t) = |φ′′(t)|, we have κ(t) = 0 ⇐⇒ φ′′(t) = 0. If φ′′(t) = 0 for all t, then
φ′(t) is constant, say φ′(t) = v, and hence φ(t) = φ(a) + v(t− a), a straight line.
Conversely, any straight line parametrized by arclength has constant velocity and thus
φ′′(t) = 0, so κ(t) = 0.

Proposition 1.14 (Curvature vector is orthogonal to the tangent) If φ is arclength
parametrized, then φ′′(t) ⊥ φ′(t) for all t.

Proof. Arclength parametrization means |φ′(t)|2 = 〈φ′(t), φ′(t)〉 = 1 is constant. Differ-
entiate:

0 = d

dt
〈φ′(t), φ′(t)〉 = 2〈φ′′(t), φ′(t)〉,

so 〈φ′′(t), φ′(t)〉 = 0, i.e. φ′′(t) ⊥ φ′(t).

Example 1.15 (Curvature of a circle of radius R) Consider the circle of radius R > 0
in R2. A standard parametrization is φ(t) = (R cos t, R sin t), t ∈ [0, 2π].
Here |φ′(t)| = R, so this is not arclength parametrized. Since the arclength from 0 to
t equals Rt, we reparametrize by t 7→ t/R and obtain the arclength parametrization

ψ(t) =
(
R cos t

R
, R sin t

R

)
, t ∈ [0, 2πR].

Then
ψ′′(t) =

(
− 1
R

cos t
R
, − 1

R
sin t

R

)
= − 1

R2ψ(t),

so
κ(t) = |ψ′′(t)| = 1

R
.

Thus a circle of radius R has constant curvature 1/R.
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§1.3 The Frenet frame
Let φ : [a, b]→ R3 be arclength parametrized, so T (t) := φ′(t) is a unit tangent vector.
When φ′′(t) 6= 0 (equivalently κ(t) 6= 0), the curvature vector provides a preferred normal
direction, and we can build an orthonormal moving frame along the curve.

Definition 1.16 (Frenet frame) — Let φ : [a, b]→ R3 be parametrized by arclength
and assume φ′′(t) 6= 0. Define:

• the unit tangent vector T (t) = φ′(t) (which has unit length);

• the principal normal vector N(t) = T ′(t)
|T ′(t)| (if T ′(t) 6= 0);

• the binormal vector B(t) = T (t)×N(t) (if T ′(t) 6= 0).

Then (T (t), N(t), B(t)) is an orthonormal, positively oriented basis of R3 at φ(t),
called the Frenet frame.

Because T ′(t) points in the normal direction and has magnitude κ(t), we immediately get

T ′(t) = κ(t)N(t).

Next, B(t) is unit length, so B′(t) ⊥ B(t); and since B = T ×N , differentiating gives
B′(t) = T (t)×N ′(t), so B′(t) ⊥ T (t) as well (a cross product is orthogonal to its factors).
Hence B′(t) is orthogonal to both B(t) and T (t), so it must be parallel to N(t). We
therefore define the torsion τ(t) by

B′(t) = −τ(t)N(t).

Finally, using N = B × T and differentiating yields

N ′(t) = τ(t)B(t)− κ(t)T (t).

Proposition 1.17 (Frenet formulas) Assume φ is arclength parametrized in R3 with
φ′′(t) 6= 0. Then

T ′(t) = κ(t)N(t),
N ′(t) = −κ(t)T (t) + τ(t)B(t),
B′(t) = −τ(t)N(t).

Equivalently,

d

dt

TN
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0


TN
B

 .

Remark 1.18 Curvature measures how strongly the curve bends away from its
tangent direction.
Torsion measures how the curve twists out of the plane spanned by T and N ; morally,
it measures how non-planar the curve is.
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Proposition 1.19 (Planarity ⇐⇒ zero torsion) Let φ : [a, b] → R3 be arclength
parametrized with φ′′(t) 6= 0 for all t. Then φ lies in a plane if and only if τ(t) = 0
for all t.

Proof. If τ(t) = 0, then B′(t) = −τ(t)N(t) = 0, so B(t) = ~c is constant. Then

d

dt
〈φ(t),~c〉 = 〈φ′(t),~c〉 = 〈T (t), B(t)〉 = 0,

so 〈φ(t),~c〉 = d is constant and φ(t) lies in the plane {~x : 〈~x,~c〉 = d}.
Conversely, if φ(t) lies in a plane 〈~x,~c〉 = d with ‖~c‖ = 1, then 〈φ(t),~c〉 = d implies
〈T (t),~c〉 = 0, and differentiating again gives

0 = 〈T ′(t),~c〉 = 〈κ(t)N(t),~c〉.

Since κ(t) 6= 0, we get 〈N(t),~c〉 = 0. Thus ~c is orthogonal to both T and N , so B = ±~c
is constant, hence B′(t) = 0 and 0 = B′(t) = −τ(t)N(t) forces τ(t) = 0.

Example 1.20 (Helix) Define φ(t) =
(
cos t√

2 , sin t√
2 ,

t√
2

)
for t ∈ R. The shape of

this curve is similar to that of a single strand of DNA molecule. It is worth looking
up what this looks like for intuition, and it will become clear that it does not lie in
any one plane.
Then φ′(t) =

(
− 1√

2 sin t√
2 ,

1√
2 cos t√

2 ,
1√
2

)
, so |φ′(t)| = 1 and the curve is arclength

parametrized.
Differentiating again, T ′(t) = φ′′(t) =

(
−1

2 cos t√
2 , −

1
2 sin t√

2 , 0
)
, hence

κ(t) = |T ′(t)| = 1
2 , N(t) = T ′(t)

|T ′(t)| =
(
− cos t√

2
, − sin t√

2
, 0
)
.

Compute B = T ×N , B(t) =
(

1√
2 sin t√

2 , −
1√
2 cos t√

2 ,
1√
2

)
, and then

B′(t) =
(1

2 cos t√
2
,

1
2 sin t√

2
, 0
)

= −1
2 N(t),

so by B′ = −τN we obtain τ(t) = 1
2 . Thus, the helix is not planar.

So far, we have seen that a regular space curve becomes especially easy to understand
once it is parametrized by arclength. Intuitively, we think of t as “time” and φ(t) as the
position of a particle.
The curvature measures how quickly the unit tangent T turns as we move along the curve,
and the torsion measures how the curve twists out of its osculating plane; in particular,
τ ≡ 0 means the curve stays in a plane, as we established.
Our next result states that in fact κ and τ determine the curve φ, essentially uniquely.
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Theorem 1.21 (Fundamental theorem of the local theory of curves) Let κ, τ : [a, b]→
R be smooth functions with κ(t) > 0 for all t ∈ [a, b].

1. Existence. There exists a regular curve φ : [a, b] → R3, parametrized by
arclength, whose curvature and torsion are exactly κ(t) and τ(t).

2. Uniqueness up to rigid motion. If ψ : [a, b] → R3 is another arclength-
parametrized curve with the same curvature and torsion, then ψ differs from
φ by a rigid motion:

ψ(t) = g ◦ φ(t) + c

for some fixed rotation g ∈ SO(3) and translation vector c ∈ R3.

Here’s some intuition about this theorem: curvature κ(t) tells you ‘how hard you are
steering’ as you travel along the curve; torsion τ(t) tells you ‘how much the steering
wheel is twisting the plane of motion.’
The theorem states: if you prescribe these two steering instructions as functions of time
(with κ > 0), then there is a curve that follows them, and any two such curves are the
same shape in space, just rotated and translated.

Example 1.22 (Constant curvature, zero torsion ⇒ circle) Let φ : [a, b]→ R3 have
torsion τ(t) = 0 and constant curvature κ(t) = c > 0. Since τ ≡ 0, the curve is
planar (by the planarity criterion τ ≡ 0). Now consider the explicit plane curve

ψ(t) =
(1
c

cos(ct), 1
c

sin(ct), 0
)
,

which is parametrized by arclength and has constant curvature c (exactly as for a
circle of radius 1/c). It also lies in the plane z = 0, so τ ≡ 0. Therefore, by theorem
1.21, φ must be obtained from ψ by a rigid motion. Hence φ is (a piece of) a circle
of radius 1/c in some plane in R3.

§1.4 Plane curves
Let φ : [a, b] → R2 be a regular curve φ(t) = (x(t), y(t)). Then the velocity φ′(t) =
(x′(t), y′(t)) is nonzero and points along the tangent direction. A convenient unit tangent
is T (t) = φ′(t)

|φ′(t)| .
A natural choice of unit normal (rotating T by +π/2) is N(t) = 1

|φ′(t)| (−y
′(t), x′(t)).

This choice makes (T,N) a positively oriented orthonormal basis of R2:

det

 | |
T N
| |

 = +1.

If φ is parametrized by arclength (so |φ′(t)| = 1), then φ′′(t) is orthogonal to φ′(t) and
φ′′(t) = κ(t)N(t). Taking the dot product with N(t) gives κ(t) = 〈φ′′(t), N(t)〉. Writing
this in coordinates with |φ′(t)| = 1 yields the familiar determinant-type formula:

κ(t) = x′(t)y′′(t)− y′(t)x′′(t).
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Even if φ is not parametrized by arclength, curvature should be a geometric quantity that
does not depend on how fast we traverse the curve. This is expressed in the following
proposition.

Proposition 1.23 Let φ : [a, b]→ R2 be a regular curve (not necessarily arclength-
parametrized). Then its curvature is

κ(t) = 〈φ
′′(t), N(t)〉
|φ′(t)|2 = x′(t)y′′(t)− y′(t)x′′(t)(

x′(t)2 + y′(t)2)3/2 .

Proof. Let ψ be an arclength reparametrization of φ, say ψ = φ ◦ f . Then

ψ′(t) = φ′(f(t)) f ′(t), ψ′′(t) = φ′′(f(t)) (f ′(t))2 + φ′(f(t)) f ′′(t).

For plane curves, curvature in arclength parameter satisfies

κψ(t) = 〈ψ′′(t), Nψ(t)〉.

Since Nψ(t) is orthogonal to ψ′(t), it is also orthogonal to φ′(f(t)), so the φ′(f(t)) f ′′(t)
term drops out:

κψ(t) = 〈φ′′(f(t)) (f ′(t))2, Nψ(t)〉 = (f ′(t))2〈φ′′(f(t)), Nψ(t)〉.

Also Nψ(t) = Nφ(f(t)) (same geometric normal at the same point), and for arclength
reparametrization one has

|ψ′(t)| = 1 ⇒ |φ′(f(t))| f ′(t) = 1 ⇒ f ′(t) = 1
|φ′(f(t))| .

Substituting gives
κφ(f(t)) = κψ(t) = 〈φ

′′(f(t)), Nφ(f(t))〉
|φ′(f(t))|2 .

Rename s = f(t) to obtain κ(s) = 〈φ′′(s), N(s)〉/|φ′(s)|2.

Example 1.24 (Curvature of a graph) Let φ(t) = (t, f(t)) be the graph of a smooth
function f . Then

φ′(t) = (1, f ′(t)), φ′′(t) = (0, f ′′(t)), |φ′(t)| =
√

1 + (f ′(t))2.

A compatible unit normal is

N(t) = 1√
1 + (f ′(t))2

(
−f ′(t), 1

)
.

Therefore

κ(t) = 〈φ
′′(t), N(t)〉
|φ′(t)|2 = f ′′(t)/

√
1 + (f ′(t))2

1 + (f ′(t))2 = f ′′(t)(
1 + (f ′(t))2)3/2 .
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§1.4.1 Winding number, turning number, and total curvature

For a closed plane curve, curvature connects geometry (how much the curve bends)
with topology (how many times it winds/turns).

Definition 1.25 (Closed curve) — A smooth curve φ : [a, b] → R2 is closed if
φ(a) = φ(b) and φ(k)(a) = φ(k)(b) for all k ≥ 1.

Definition 1.26 (Winding number about the origin) — Assume φ(t) 6= 0 for all
t ∈ [a, b]. The winding number w(φ) ∈ Z counts (with sign) how many times φ
goes around the origin.
Identifying R2 ∼= C via z = x+ iy, one can compute

w(φ) = 1
2πi

∮
γ

dz

z
,

where γ = φ([a, b]).

Writing φ(t) = (x(t), y(t)), one expands (as in complex analysis) to obtain

w(φ) = 1
2π

∫ b

a

x(t)y′(t)− x′(t)y(t)
x(t)2 + y(t)2 dt.

If φ is regular and parametrized by arclength, then the unit tangent is simply T (t) = φ′(t).
The turning number (also called the index) is the winding number of T (t) around the
origin.

Definition 1.27 (Turning number / Index) — Let φ : [a, b]→ R2 be a closed regular
curve parametrized by arclength. Its index is Ind(φ) = w(T ), the winding number
of the unit tangent T (t).

If |φ′(t)| = 1, then applying the winding-number formula to T (t) = (x′(t), y′(t)) gives

w(T ) = 1
2π

∫ b

a

(
x′(t)y′′(t)− y′(t)x′′(t)

)
dt = 1

2π

∫ b

a
κ(t) dt.

Theorem 1.28 If φ : [a, b]→ R2 is a closed curve parametrized by arclength, then

Ind(φ) = 1
2π

∫ b

a
κ(t) dt.

As you travel along the curve, the unit tangent T (t) rotates. Curvature κ(t) measures
the instantaneous turning rate of this tangent (when speed is 1).
Integrating κ over the whole loop gives the total amount of turning the tangent has done.
The theorem states that total turning must be an integer multiple of 2π, exactly because
a full rotation of a direction is 2π and the tangent must match up when the curve closes.
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§2 Surfaces
§2.1 Surfaces in Euclidean space
Curves are 1-dimensional objects; locally, they look like a line segment. Surfaces are the
2-dimensional analogue: locally, they should look like a patch of the plane R2 sitting
inside R3.
The formal way to capture ‘looks like a plane nearby’ is via charts (i.e. local parametriza-
tions).

Definition 2.1 (Regular surface) — A subset S ⊂ R3 is a regular surface if for
every point p ∈ S there exist

• an open neighbourhood V ⊂ R3 of p,

• an open set U ⊂ R2,

• and a smooth map φ : U → R3

such that:

1. φ(U) = V ∩ S (the map parametrizes a neighbourhood of p in the surface),

2. φ is a homeomorphism onto its image (so it has a continuous inverse on φ(U)),

3. for every q ∈ U , the differential dφq : R2 → R3 is injective.

The pair (U, φ) is called a chart (or local parametrization) around p.

Remark 2.2 A chart is a coordinate system on the surface: you choose parameters
(u, v) in an open region of R2 and map them smoothly into R3 to draw a ‘patch’ of
the surface.
Condition (2) prevents self-overlaps or foldings at the level of topology (locally the
surface really is a 2D sheet).

Example 2.3 (Graphs of functions) If f : R2 → R is smooth, its graph

Γf = {(x, y, f(x, y)) : (x, y) ∈ R2}

is a regular surface. A chart is φ(u, v) = (u, v, f(u, v)). In coordinates, the differential
is

dφ(u,v) =

 1 0
0 1

fx(u, v) fy(u, v)

 ,
whose two columns are clearly linearly independent, hence dφ is injective everywhere.

This shows, particularly, that the xy-plane is a regular surface, for instance.
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Example 2.4 (The sphere) The unit sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

is a regular surface, but it cannot be covered by one chart (any single chart would
fail somewhere). A standard choice is to use stereographic projection, giving two
charts (from the north and south poles) that together cover S2.

Remark 2.5 What does the injectivity of dφ really mean? Writing φ in coordinates,

φ(u, v) =

x(u, v)
y(u, v)
z(u, v)

 =⇒ dφ(u,v) =

xu xv
yu yv
zu zv

 .
This map is injective iff the two vectors φu(u, v) = ∂φ

∂u(u, v), φv(u, v) = ∂φ
∂v (u, v) are

linearly independent in R3.
Geometrically, fixing v = v0 traces a curve u 7→ φ(u, v0) on the surface, whose
velocity at u0 is φu(u0, v0). Similarly, fixing u = u0 gives a curve with velocity
φv(u0, v0). Injectivity means these two velocity directions span a genuine plane: the
tangent plane to the surface at φ(u0, v0).

Example 2.6 (Non-example - a cone point) The cone

S = {(x, y, z) : x2 + y2 = z2, z ≥ 0}

is not a regular surface at the tip (0, 0, 0). Away from the tip it looks smooth, but at
the tip there is no single well-defined tangent plane: the surface comes in with many
possible limiting tangent directions.

A huge class of surfaces arises as level sets of a function F : R3 → R:

S = F−1(c) = {p ∈ R3 : F (p) = c}.

The key idea is: if ∇F is nonzero on the level set, then the level set is “cut out transversely”
and behaves like a smooth surface.

Theorem 2.7 Let F : R3 → R be smooth and let S = F−1(c) for some c ∈ R. If
∇F (p) 6= 0 for every p ∈ S, then S is a regular surface.

The proof of this theorem will require the following familiar result from analysis.

Theorem 2.8 (Inverse function theorem) Let g : Rn → Rn be smooth in a neighbour-
hood of p, and suppose dgp is invertible. Then there exists an open neighbourhood
U of p such that

g : U → g(U)

is a diffeomorphism (smooth with smooth inverse).

11
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Proof. of theorem 2.7 (sketch) Fix p ∈ S. Since ∇F (p) 6= 0, at least one partial
derivative is nonzero at p; assume for concreteness that Fz(p) 6= 0. Define g(x, y, z) =

(x, y, F (x, y, z)). Then, dgp =

 1 0 0
0 1 0

Fx(p) Fy(p) Fz(p)

, whose determinant is Fz(p) 6= 0,

so dgp is invertible.
By the inverse function theorem 2.8, g is locally invertible near p, with smooth inverse
g−1.
Now notice: g sends the level set F = c to the horizontal plane {z = c}, because
F (x, y, z) = c implies g(x, y, z) = (x, y, c). So locally, the level set can be parametrized
by the inverse map restricted to the plane {z = c}:

φ(u, v) = g−1(u, v, c).

This gives a smooth chart whose differential has rank 2 (because g−1 is a local diffeomor-
phism), and it parametrizes S near p. Hence S is a regular surface.

Example 2.9 (Sphere as a level set) Take F (x, y, z) = x2+y2+z2. Then S2 = F−1(1)
and

∇F (x, y, z) = (2x, 2y, 2z),

which is never zero on the sphere. Hence S2 is a regular surface by theorem 2.7.

One reason graphs are so important is that every regular surface looks like a graph locally
after a suitable choice of coordinates.

Lemma 2.10 (Local graph form) Let S ⊂ R3 be a regular surface and p ∈ S. Then
in a neighbourhood of p, the surface can be written as the graph of a smooth function,
in one of the forms

z = f(x, y), y = g(x, z), or x = h(y, z).

The intuition for this theorem is: even if a surface is globally complicated, locally it is
always just a smooth ‘height function’ above some plane (after possibly rotating axes).
So the definition via charts is not abstract for its own sake: it exactly captures the idea
of a smooth 2D sheet in R3.

§2.1.1 Charts, coordinates, and transition maps

A useful mental diagram is:

U ⊂ R2 φ−−→ φ(U) ⊂ S ⊂ R3

(u, v) 7−→ φ(u, v)

A regular surface S ⊂ R3 is ‘locally a plane’: if you zoom in near a point p ∈ S, the
surface looks like a slightly bent patch of R2.
A chart makes this precise by giving you a way to use ordinary (u, v)-coordinates to
label points on the surface near p.

12
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Usually one chart is not enough to cover the whole surface (the sphere is the classic
example). So we use many charts whose images overlap. If two charts

φ : U → S, ψ : V → S

overlap (so φ(U) ∩ ψ(V ) 6= ∅), then points in the overlap can be described in two
coordinate systems:

(u, v) ∈ U and (s, t) ∈ V.

The rule for converting coordinates is the transition map:

ψ−1 ◦ φ : φ−1(φ(U) ∩ ψ(V )) −→ ψ−1(φ(U) ∩ ψ(V )).

This is literally ‘change of coordinates on the surface’. A key idea is that all intrinsic
geometry (lengths, angles, curvature, etc.) should not depend on which chart we use, so
we must understand how quantities transform under these transition maps, i.e. charts
are local coordinate systems on S, and transition maps are the coordinate changes.

§2.2 Tangent vectors and tangent planes
Intuitively, the tangent plane to a surface at a point p is the best linear (flat) approximation
to the surface near p, just as the tangent line is the best linear approximation to a curve
at a point. We now make this idea precise.

Definition 2.11 (Tangent vectors and tangent plane) — Let S ⊂ R3 be a regular
surface and let p ∈ S. A tangent vector to S at p is a vector of the form α′(0),
where α : (−ε, ε)→ S is a smooth curve with α(0) = p.
The tangent plane to S at p, denoted TpS, is the set of all tangent vectors at p:

TpS := {α′(0) | α smooth curve in S, α(0) = p}.

As we thought of the tangent vector as the velocity of a particle moving along the surface
and passing through p, the tangent plane is then the set of all possible velocities the
particle could have at that instant — in other words, all directions in which the surface
allows motion at p.
This definition does not mention charts, so it is intrinsic, but it is not very convenient
for calculations. Charts allow us to compute TpS explicitly.

Lemma 2.12 Let φ : U → R3 be a chart for S at p, and let q ∈ U satisfy φ(q) = p.
Then,

dφq(R2) = span
{
∂φ

∂u
(q), ∂φ

∂v
(q)
}
⊂ TpS.

Proof. Any vector in dφq(R2) has the form w = a ∂φ
∂u(q) + b ∂φ∂v (q) for a, b ∈ R.

Consider the curve α(t) = φ(u0 + at, v0 + bt), q = (u0, v0). Then, α(0) = p and by the
chain rule,

α′(0) = a
∂φ

∂u
(q) + b

∂φ

∂v
(q) = w,

so w ∈ TpS.

13
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The vectors ∂uφ(q) and ∂vφ(q) are the velocities of the coordinate curves on the surface.
Their span is the plane generated by moving independently in the u and v directions —
exactly what we expect for a tangent plane.
To prove that this description gives all tangent vectors, we need to show that any curve
on S can locally be written in chart coordinates.

Lemma 2.13 Let φ : U → R3 be a chart for S at p. If α : (−ε, ε)→ S is a smooth
curve with α(0) = p, then for sufficiently small ε′ > 0 there exist smooth functions
u(t), v(t) such that

α(t) = φ(u(t), v(t)) for t ∈ (−ε′, ε′).

Proof. (sketch) Near p, the surface can be written as the graph of a smooth function
(e.g. z = f(x, y)). This allows us to use the inverse function theorem to solve locally for
the surface coordinates (u, v) as smooth functions of (x, y), and hence express any curve
on the surface in chart coordinates.

Theorem 2.14 (Tangent plane via a chart) Let φ : U → R3 be a chart for S at p,
with φ(q) = p. Then,

TpS = dφq(R2) = span
{
∂φ

∂u
(q), ∂φ

∂v
(q)
}
.

Proof. The inclusion dφq(R2) ⊂ TpS follows from the first lemma. Conversely, if v =
α′(0) ∈ TpS, then by lemma 2.13 α(t) = φ(u(t), v(t)) locally, and hence

α′(0) = ∂φ

∂u
(q)u′(0) + ∂φ

∂v
(q) v′(0),

which lies in dφq(R2).

Remark 2.15 A chart does not just parametrize the surface - it also gives a
concrete basis for the tangent plane via the coordinate vectors ∂uφ and ∂vφ.

Example 2.16 Let S = {x2 + y2 + z2 = 1} and p = (0, 0, 1). Writing S locally as
the graph

φ(u, v) = (u, v,
√

1− u2 − v2),

we compute
∂φ

∂u
(0, 0) = (1, 0, 0), ∂φ

∂v
(0, 0) = (0, 1, 0),

so TpS = span{(1, 0, 0), (0, 1, 0)}, the horizontal plane z = 0.

If S = F−1(c) is a regular level set of a smooth function F : R3 → R, then the tangent
plane has an especially clean description.

14
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Proposition 2.17 Let S = F−1(c) be a regular level set. Then for any p ∈ S,

TpS = {v ∈ R3 | 〈v,∇F (p)〉 = 0} = (∇F (p))⊥.

Remark 2.18 The gradient ∇F (p) points in the direction of fastest increase of F .
Since F is constant along S, any motion tangent to the surface must be orthogonal
to ∇F (p). Thus the gradient is a normal vector to the surface, and the tangent
plane is its perpendicular complement.

Example 2.19 For the paraboloid z = x2 + y2, write F (x, y, z) = x2 + y2 − z.
At p = (1, 3, 10), ∇F (p) = (2, 6,−1), so the tangent plane is TpS = {(x, y, z) |
2x+ 6y − z = 0}.

§2.3 Smooth maps and differentials
A surface is locally just an open patch of R2 viewed inside R3 via a chart. So the basic
idea to define smoothness on a surface, we define it in coordinates.
That is, we declare a map to be smooth if, after writing the surface in local parameters
(u, v), the resulting coordinate expression is a smooth map between open sets in Euclidean
space.

Definition 2.20 (Smooth maps between surfaces) — Let S1, S2 ⊂ R3 be regular
surfaces. A map F : S1 → R3 is smooth if for every chart φ : U → S1 the
composition

U
φ−−→ S1

F−−→ R3

is smooth as a map from an open set U ⊂ R2 into R3.
A map F : S1 → S2 is smooth if it is smooth when viewed as a map S1 → R3.

A chart gives local coordinates on S1, so F ◦ φ is literally ‘F written in local parameters.’
Demanding that F ◦ φ is smooth for every chart means the notion does not depend on
any single parametrization.
On Rn, the derivative at a point is a linear map that tells you how a function changes to
first order. On a surface, we do the same: we measure first-order change along curves on
the surface. This leads to the differential as a map between tangent planes.

Definition 2.21 (Differential of a smooth map) — Let F : S1 → S2 be smooth and
let p ∈ S1. For a tangent vector v ∈ TpS1, choose a smooth curve α : (−ε, ε)→ S1
with α(0) = p and α′(0) = v. Define β(t) = F (α(t)), a curve in S2 with β(0) = F (p),
and set the differential dFp(v),

dFp(v) = β′(0) ∈ TF (p)S2.

Think of v as a ‘direction of travel’ on the surface through p. The differential dFp tells
you what velocity vector you get after applying F , i.e. how F pushes tangent directions
forward.

15
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Proposition 2.22 (Well-definedness) The value dFp(v) does not depend on which
curve α with α(0) = p and α′(0) = v is used in definition 2.21.

Proof. Let α1, α2 be two such curves with the same initial position and velocity. Pick a
chart φ : U → S1 with φ(q) = p. By writing αi(t) = φ(ui(t), vi(t)) for t near 0, the chain
rule gives

α′i(0) = ∂φ

∂u
(q)u′i(0) + ∂φ

∂v
(q) v′i(0).

Because φ is a chart, the vectors φu(q) and φv(q) are linearly independent, so α′1(0) = α′2(0)
forces (u′1(0), v′1(0)) = (u′2(0), v′2(0)). Now differentiate F (αi(t)) = (F ◦ φ)(ui(t), vi(t)) at
t = 0 to obtain

(F ◦ αi)′(0) = ∂(F ◦ φ)
∂u

(q)u′i(0) + ∂(F ◦ φ)
∂v

(q) v′i(0),

which is the same for i = 1, 2. Hence dFp(v) is independent of the chosen curve.

Proposition 2.23 For each p ∈ S1, the map dFp : TpS1 → TF (p)S2 is linear.

Proof. Take v1, v2 ∈ TpS1 and scalars c1, c2. In local coordinates via a chart φ at p, tangent
vectors correspond to velocities in R2, and differentiation of F ◦φ gives a linear map at the
point. Chasing through the definition shows dFp(c1v1+c2v2) = c1 dFp(v1)+c2 dFp(v2).

The most useful computational rule is: the differential sends the coordinate tangent
vectors φu, φv to the corresponding partial derivatives of F ◦ φ. This is a kind of chain
rule.

Lemma 2.24 Let F : S1 → S2 be smooth and let φ : U → S1 be a chart. Fix
(u0, v0) ∈ U and let p = φ(u0, v0). Then

dFp

(
∂φ

∂u
(u0, v0)

)
= ∂(F ◦ φ)

∂u
(u0, v0), dFp

(
∂φ

∂v
(u0, v0)

)
= ∂(F ◦ φ)

∂v
(u0, v0).

Proof. Consider the curve α(t) = φ(u0 + t, v0). Then α′(0) = φu(u0, v0) and

dFp(α′(0)) = (F ◦ α)′(0) = ∂(F ◦ φ)
∂u

(u0, v0).

The v-formula is identical.

We can apply the same idea to real-valued functions on a surface, f : S → R.

Definition 2.25 (Smooth functions and their differential) — Let S ⊂ R3 be a regular
surface. A function f : S → R is smooth if for every chart φ : U → S, the
composition f ◦φ : U → R is smooth. For p ∈ S and v ∈ TpS, choose a curve α with
α(0) = p and α′(0) = v and define the differential dfp(v)

dfp(v) = d

dt
f(α(t))

∣∣∣∣
t=0

.
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Example 2.26 (A differential on the unit sphere) Let S = {x2 + y2 + z2 = 1},
fix p = (0, 1, 0), and define f : S → R by f(x, y, z) = z. Since S = g−1(1) for
g(x, y, z) = x2 + y2 + z2, proposition 2.17 gives

TpS = (∇g(p))⊥, ∇g(p) = (0, 2, 0).

Hence TpS = {(a, 0, c) : a, c ∈ R} = span{(1, 0, 0), (0, 0, 1)}. To compute dfp, choose
a local chart φ near p so that f ◦ φ(u, v) = v. Then, by Lemma 2.24,

dfp

(
∂φ

∂u
(0, 0)

)
= 0, dfp

(
∂φ

∂v
(0, 0)

)
= 1,

so dfp kills the ‘x-direction’ tangent and returns 1 on the ‘z-direction’ tangent.

There is also a surface-level analogue of the inverse function theorem: if dFp is an
isomorphism, then F is locally a diffeomorphism, as stated in the following proposition.

Proposition 2.27 Let F : S1 → S2 be smooth. If dFp : TpS1 → TF (p)S2 is an
isomorphism for some p ∈ S1, then there exists an open neighborhood V ⊂ S1 of p
such that F |V : V → F (V ) is a diffeomorphism.

Proof. Choose charts φ1 : U1 → S1 at p and φ2 : U2 → S2 at F (p) with φ1(q1) = p and
φ2(q2) = F (p). Define the coordinate version of F by

g = φ−1
2 ◦ F ◦ φ1 : U1 → U2,

after shrinking U1 so this is well-defined. By the chain rule,

dgq1 = (dφ−1
2 )F (p) ◦ dFp ◦ (dφ1)q1 .

Each factor is invertible: dφ1 and dφ2 are injective (indeed rank 2 maps giving isomor-
phisms R2 ∼= TpS1 and R2 ∼= TF (p)S2), and dFp is invertible by hypothesis. Hence dgq1

is invertible, so by the inverse function theorem on R2, g is a diffeomorphism near q1.
Conjugating back by the charts shows F is a diffeomorphism near p.

§2.4 Normal vectors and the Gauss map
A regular surface S ⊂ R3 has a well-defined tangent plane TpS at each point p ∈ S.
Geometrically, there are exactly two unit vectors perpendicular to this plane (they
point to the two possible ‘sides’ of the surface). Locally, one can choose one of these
continuously, but globally this may fail (e.g. see on a Möbius strip).
If S happens to be given as a regular level set S = F−1(c) = {p ∈ R3 : F (p) = c},
(∇F (p) 6= 0 for all p ∈ S), then proposition 2.17 tells us TpS =

(
∇F (p)

)⊥.
So ∇F (p) points in a normal direction, and a canonical unit normal is N(p) = ∇F (p)

‖∇F (p)‖ .

More generally, if ϕ : U → S is a chart and p = ϕ(u, v), then ∂ϕ
∂u (u, v), ∂ϕ∂v (u, v) span TpS

(theorem 2.14). Their cross product is therefore nonzero and perpendicular to TpS, so
we can define a unit normal on the chart image by

N
(
ϕ(u, v)

)
= ϕu(u, v)× ϕv(u, v)
‖ϕu(u, v)× ϕv(u, v)‖ , where ϕu = ∂ϕ

∂u
, ϕv = ∂ϕ

∂v

Intuitively, ϕu and ϕv are the velocity vectors of the two coordinate curves on the surface,
so ϕu × ϕv points ‘straight out of’ the surface.

17
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Definition 2.28 (Orientability and Gauss map) — A surface S ⊂ R3 is orientable
if one can choose a unit normal vector N(p) continuously for all p ∈ S.
Since each N(p) lies on the unit sphere S2, such a choice defines a continuous map
N : S → S2, called the Gauss map of S.

If S = F−1(c) is a regular level set, then N(p) = ∇F (p)/‖∇F (p)‖ gives a global
continuous choice, so every regular level set is orientable.

Example 2.29 (Gauss map of sphere) Let S = S2 = {(x, y, z) : x2 + y2 + z2 = 1}.
Take F (x, y, z) = x2 + y2 + z2. Then ∇F = (2x, 2y, 2z), so on S2,

N(x, y, z) = (2x, 2y, 2z)√
4(x2 + y2 + z2)

= (x, y, z).

Thus the Gauss map N : S2 → S2 is the identity.

Example 2.30 (Gauss map of plane) Let P ⊂ R3 be the plane ax + by + cz = d
with (a, b, c) 6= 0. With F (x, y, z) = ax+ by + cz, we have ∇F = (a, b, c), so

N(x, y, z) = (a, b, c)√
a2 + b2 + c2

,

a constant map. So planes have constant normal direction.

Because N : S → S2 is a smooth map between surfaces (when S is orientable and N is
smooth), it has a differential

dNp : TpS −→ TN(p)S
2.

But at the point N(p) ∈ S2, the normal to the sphere is exactly N(p) itself, so

TN(p)S
2 = {w ∈ R3 : 〈w,N(p)〉 = 0}.

On the other hand, N(p) is also a normal to S at p, so

TpS = {v ∈ R3 : 〈v,N(p)〉 = 0}.

Hence there is a natural identification TN(p)S
2 ∼= TpS, and we may view

dNp : TpS → TpS

as a linear endomorphism of the tangent plane. Intuitively, dNp measures how quickly
the normal direction changes when you move along the surface: flat surfaces have (nearly)
constant normals; curved surfaces have normals that rotate as you travel.

18
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Example 2.31 (Sphere of radius r) Let S = {(x, y, z) : x2 + y2 + z2 = r2} with
r > 0. Using F (x, y, z) = x2 + y2 + z2 we get

N(p) = ∇F (p)
‖∇F (p)‖ = p

r
.

Given any curve α(t) ∈ S with α(0) = p and α′(0) = v ∈ TpS,

dNp(v) = d

dt
N(α(t))

∣∣∣
t=0

= d

dt

(α(t)
r

)∣∣∣
t=0

= 1
r
α′(0) = 1

r
v.

So
dNp = 1

r
Id : TpS → TpS.

This matches the idea that spheres have constant ‘amount of bending’ everywhere,
and bigger spheres bend less.

Proposition 2.32 (Computing dNp in a chart) Let ϕ : U → S be a chart and let
p = ϕ(q) with q ∈ U . Then dNp is determined by

dNp(ϕu(q)) = ∂(N ◦ ϕ)
∂u

(q), dNp(ϕv(q)) = ∂(N ◦ ϕ)
∂v

(q).

Proof. (sketch) By theorem 2.14, ϕu(q) and ϕv(q) span TpS, so by linearity it suffices
to compute dNp on these two vectors. The identities follow directly from the chain rule
lemma 2.24) applied to the map N : S → S2 composed with the chart ϕ.

Remark 2.33 To gain some intuition, we can think of walking on the surface with
a tiny arrow sticking straight out of the surface at our feet (the normal).
As we move, that arrow swivels; the Gauss map records ‘which way the arrow points’
and dNp records its instantaneous rate of change in each tangent direction.
For flat planes, the arrow never swivels (dNp = 0), while for spheres, the arrow
swivels at a constant rate ∼ 1/r in every direction.
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§3 The First and Second Fundamental Forms
§4 Area and Integration on Surfaces
§4.1 The Gauss-Bonnet theorem
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