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1 Introduction

1.1 Stylized facts of asset returns

• Little autocorrelation in returns: daily returns are essentially uncorrelated across
time, so the conditional mean is approximately constant (often set to zero).

• Non-normality (fat tails): return distributions are more peaked and have heavier
tails than Normal, so Gaussian models underestimate extreme losses.

• Asymmetry (negative skewness): large negative returns occur more often than large
positive ones, implying downside risk is more severe than upside gains.

• Mean close to zero (short horizons): at daily frequency, volatility dominates the
mean, so risk modeling focuses on variance rather than expected return.

• Volatility clustering (variance persistence): high volatility follows high volatility
(and low follows low), motivating time-varying volatility models such as GARCH.

• Leverage effect: volatility tends to rise after negative returns, implying asymmetric
volatility response to shocks.

• Time-varying correlation: correlations increase in stressed markets, so constant-
correlation assumptions can understate portfolio risk in downturns.

• Conditional non-normality: even standardized returns zt = Rt/σt remain heavy-
tailed, motivating filtered historical simulation and fat-tailed shock distributions.

• Long-horizon normality: aggregated returns become closer to Normal at longer
horizons, though volatility dynamics can still matter for long-horizon risk.

Asset returns have weak mean dynamics but strong, persistent, asymmetric, and non-
Gaussian volatility and dependence, motivating GARCH/FHS, dynamic correlation, and
stress testing frameworks.

1.2 Value at risk

Value-at-Risk (VaR) is a risk measure that answers the question: “given the distribution
of portfolio returns, what is the loss that would be exceeded with probability p?”.
For a loss random variable Losst+1, the dollar VaR ($V aR) is implicitly defined by:

Pr(Losst+1 > $V aRp) = p

*These notes are informed by ideas and discussions shared by Prof. Caio Almeida at Princeton University.
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In terms of portfolio returns (RPF ), this is equivalent to:

Pr(RPF,t+1 < −V aRp) = p

For example, if the 1% VaR is 2%, it means there is a 1% probability that the portfolio
will lose more than 2% of its value.
A key drawback of VaR is that it ignores extreme losses; it tells you the threshold for the
worst p% of outcomes but says nothing about how bad those outcomes could be.

1.3 Expected shortfall

Expected Shortfall (ES) measures the expected loss given that the loss exceeds the VaR.

ESp,t+1 = −Et[RPF,t+1|RPF,t+1 < −VaRp,t+1]

For any continuous distribution, ES is the average of all VaR values for quantiles more
extreme than p, which guarantees that ESp ≥ VaRp.
ES is sensitive to the fatness of the distribution’s tail; the fatter the tail (higher kurtosis),
the larger the gap between ES and VaR.
For HS, ES is calculated by taking the average of all returns that are smaller than the
VaR value.

1.4 Coherence of risk measures
• Monotonicity: If a position produces larger losses in all states, it is riskier. Risk

measures must preserve this ordering.
• Translation Invariance: Adding a sure loss l increases risk by exactly l. Risk shifts

one-for-one with deterministic cash flows.
• Subadditivity:

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

Diversification should not increase risk. Expected Shortfall satisfies this; VaR may
fail.

• Positive Homogeneity:
ρ(λL) = λρ(L).

Scaling a position scales its risk proportionally. This allows separation of volatility
and shocks, e.g.

VaRp
Rt+1

= −σt+1F
−1
z (p).

ES satisfies all four coherence axioms, whereas VaR is not coherent since it fails subad-
ditivity (while passing the other three).

1.5 Filtered historical simulation example

We give an example of FHS with GARCH(1,1) to estimate a 1-day ahead VaR.
We observe a time series of portfolio returns {Rτ}mτ=1 generated by Rt = σtzt, where zt
are i.i.d. shocks with unknown distribution Dz, and σt follows a GARCH(1,1) volatility
process.
The key idea of Filtered Historical Simulation (FHS) is to:
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• use a parametric model (GARCH) to capture time-varying volatility σt,
• use historical data to capture the distribution of shocks zt, without imposing nor-

mality.

The objective is to estimate VaRp
t+1 (e.g. p = 1%) at the end of day t.

First, estimate the volatility model and “filter” the returns. Then, fit a GARCH(1,1)
model to the historical returns {Rτ}mτ=1 and obtain the fitted conditional volatilities
{σ̂τ}.
Compute the standardized residuals (filtered shocks): ẑτ = Rτ

σ̂τ
, τ = 1, . . . ,m.

Intuition: Dividing returns by their conditional volatility removes volatility clustering,
so the series {ẑτ} is closer to i.i.d., without assuming a parametric form for Dz.
Next step is to forecast tomorrow’s volatility. At the end of day t, both Rt and σ̂t are
known.
The one-step-ahead volatility forecast is obtained from the GARCH recursion:

σ̂2
t+1 = ω̂ + α̂R2

t + β̂σ̂2
t .

Then, we simulate tomorrow’s return using resampled shocks. Perform Historical Simu-
lation on the shocks (not on raw returns):

1. Draw H values with replacement from the empirical database {ẑτ}mτ=1. Call them
by ẑ(h), h = 1, . . . , H .

2. Construct H one-day-ahead return scenarios: R(h)
t+1 = σ̂t+1 ẑ

(h), h = 1, . . . , H .

Next step is to compute the 1-day VaR from simulated returns. Since losses correspond
to negative returns, the one-day-ahead VaR is computed as:

VaRp
t+1 = −Quantilep

(
{R(h)

t+1}Hh=1

)
.

For p = 1%, this corresponds to the negative of the 1st percentile of the simulated return
distribution.

2 Correlation

2.1 Portfolio correlation

While volatility captures individual asset risk, correlation ρ captures the joint movement
of assets. It is the primary driver of portfolio diversification benefits.
For an N -asset portfolio, we must estimate N volatilities but N(N − 1)/2 correlations.
As N grows, the correlation terms dominate the portfolio variance. Portfolio return,
rPF,t+1 =

∑n
i=1 wi,tri,t+1. Even if you can model each stock’s volatility, portfolio risk also

depends on how they move together (covariance/correlation).

σ2
PF,t+1 =

n∑
i=1

n∑
j=1

wi,twj,tσij,t+1 =
n∑

i=1

n∑
j=1

wi,twj,tσi,t+1σj,t+1ρij,t+1

Correlation can be time-varying (stylized fact) and increases during crises/financial tur-
moil (diversification reduces), which increases portfolio risk further. Correlation is treated
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as risk factor, e.g. w1 = w2 = 0.5, σ1 = σ2 = σ, if correlation ρ = 0 then σPF =
√
0.5σ;

if ρ = 0.8 then σPF =
√
0.9σ.

2.2 Rolling window covariance

The simplest estimator. Calculates covariance using a fixed window of size m (e.g., 250
days).

σij,t+1 =
1

m

m∑
τ=1

Ri,t+1−τRj,t+1−τ

Flaws: Equal weighting (slow reaction to recent news), ghost effects (abrupt changes
when a large shock drops out of the window).

2.3 RiskMetrics covariance (EWMA)

Applies Exponentially Weighted Moving Average to covariance, similar to volatility (typ-
ically λ = 0.94).

σij,t+1 = (1− λ)Ri,tRj,t + λσij,t

Flaws: Implies persistence= 1; shocks to covariance persist forever and no mean reversion
to a long-run average correlation.

2.4 GARCH covariance

Introduces mean reversion to a long-run unconditional covariance ωij.

σij,t+1 = ωij + αRi,tRj,t + βσij,t

Constraint: To ensure the matrix is positive semi-definite, we often must assume α and β
are the same for all pairs, which is too restrictive (different assets have different correlation
dynamics).

2.5 Dynamic conditional correlation (DCC)

The industry standard for modeling large covariance matrices. Covariance matrix is
Σt+1 = Dt+1γt+1Dt+1, Dt+1 = diag(σ1,t+1, . . . , σn,t+1), γt+1 is correlation matrix with
entries ρij,t+1.
After estimating conditional volatilities for each asset i, σi,t, (e.g. using GARCH or
EWMA), define zi,t :=

Ri,t

σi,t
.

Then these standardized residuals zi,t have variance ≈ 1 and conditional correlation is
Et[zi,t+1zj,t+1] = ρij,t+1 so correlation dynamics modelled using cross product terms.
Can also instead apply exponentially smoothing on z’s giving

ρij,t+1 =
qij,t+1√

qii,t+1qjj,t+1

, qij,t+1 = (1− λ)zi,tzj,t + λqij,t

and we reconstruct Σt+1 at the end.
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2.6 Term structure of VaR example

A simple illustration from lectures is the VaR term structure: under GARCH/NGARCH:
the 1% VaR as a function of the horizon can look very different depending on the current
volatility relative to its long-run level.

• When current volatility is low (below long-run), the VaR term structure can be
initially upward sloping because volatility is expected to rise toward its long-run
level.

• When current volatility is high (above long-run), the VaR term structure can also
be initially upward sloping, but the shape differs because volatility is expected to
mean-revert downward. Additionally, higher moments (kurtosis) can affect short
horizons.

This example shows why long-horizon VaR is not just “today’s 1-day VaR times
√
K”: the

entire future volatility path matters, and the long-horizon distribution must be constructed
using simulation methods rather than a simple analytical scaling.

3 Long Horizon Risk

Let daily portfolio returns follow Rt = σtzt, where zt ∼i.i.d. Dz and σt is time-varying (e.g.
GARCH). For a 1-day horizon, risk depends primarily on the current conditional variance
σ2
t+1. For a K-day horizon, risk depends on the entire future path {σt+1, σt+2, . . . , σt+K}.

Monte Carlo and FHS are required to capture time-varying volatility dynamics.

3.1 The square root of time rule

If returns are i.i.d. normal with constant variance σ2, variance over K days scales linearly
Var(Rt:t+K) = Kσ2, VaRK =

√
K VaR1.

This fails under GARCH; volatility is mean-reverting and stochastic, not constant.
Under GARCH(1,1), σ2

t = ω + αR2
t−1 + βσ2

t−1, α + β < 1. The conditional variance
forecast satisfies Et[σ

2
t+k] = σ̄2 + (α + β)k−1(σ2

t+1 − σ̄2), where σ̄2 = ω/(1− α− β).

The K-day variance is therefore Vart(Rt:t+K) =
∑K

k=1 Et[σ
2
t+k], which is not equal to

Kσ2
t+1.

Thus, if σ2
t+1 > σ̄2, the

√
K rule overestimates long-horizon risk. If σ2

t+1 < σ̄2, the
√
K

rule underestimates long-horizon risk.
Long-horizon risk is harder because it requires forecasting volatility dynamics. Risk is
path-dependent: Rt:t+K =

∑K
k=1 σt+kzt+k.

Thus, risk depends on persistence (α + β); volatility shocks today affect risk many days
ahead; closed-form VaR expressions generally do not exist.

3.2 Monte-Carlo simulation (MCS)

Monte Carlo simulation is used to compute long-horizon VaR/ES when analytical scaling
fails.

1. Estimate GARCH parameters (ω, α, β) and current σt+1.
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2. Draw K i.i.d. shocks ẑ1, . . . , ẑK ∼ N(0, 1).
3. Generate returns recursively (for k = 1, . . . K): Rt+k = σt+kẑk, σ2

t+k+1 = ω+αR2
t+k+

βσ2
t+k.

4. Aggregate returns Rt:t+K =
∑K

k=1 Rt+k.
5. Repeat for many paths and compute VaR as the desired percentile.

3.3 Filtered historical simulation (FHS)

FHS combines GARCH volatility dynamics with the empirical distribution of shocks -
assumes distributions of shocks is constant, but volatility changes.
First, fit GARCH model to historical returns Rt−τ . Get parameters ω̂, α̂, β̂. Then
compute standardized residuals, ẑt−τ = Rt−τ

σ̂t−τ
.

Then, to forecast K days ahead, draw z∗ from {ẑt−τ} (with replacement, i.e. bootstrap).
Compute tomorrow’s return, R∗

t+1 = σ̂t+1ẑ
∗.

Update volatility for t+ 2, σ̂∗2
t+2 = ω̂ + α̂(R∗

t+1)
2 + β̂σ̂2

t+1.
Draw another z∗, calculate R∗

t+2 etc. up to day K.
Then sum returns for the path, R∗

path =
∑

R∗. Repeat this for many paths, then VaR is
the percentile of the simulated R∗

path distribution.
FHS captures fat tails (from historical z) and volatility clustering (from GARCH).

4 Fixed Income Risk

Zero-coupon bond (ZCB): pays $1 at t+ T . Its time-t price is P (t, T ) = e−TR(t,T ), where
R(t, T ) is the continuously compounded yield. Can rearrange for R(t, T ) in terms of
price.
Term structure / yield curve: the function T 7→ R(t, T ), mapping each maturity T to
the discount rate used to value cashflows at t+ T (typically only partially observed on a
discrete grid of maturities).
Coupon bond pricing (given a TS): for cashflows {Ck}Kk=1 paid at maturities {Tk}, B(t) =∑K

k=1 Cke
−TkR(t,Tk).

4.1 Factor structure of yields

From P (t, T ) = e−TR(t,T ), the primitive risk factor for a ZCB is the yield R(t, T ) (and
for a coupon bond, the collection {R(t, Tk)} that discounts each cashflow). We build a
low-dimensional factor representation for the entire curve because yields co-move strongly
across maturities.
A general factor representation used in the notes is

R̂(t, T ; βt) =
J∑

j=1

βt,j fj(T ),
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where βt = (βt,1, . . . , βt,J)
⊤ is a vector of risk factors that changes over time (daily), fj(T )

are ”loading functions” (deterministic functions of maturity), and the curve at each date
t is fit cross-sectionally using observed yields at a finite set of maturities.

4.2 Polynomial term structure model

A key model is the 3-factor power-polynomial approximation:

R̂(t, T ; βt) = βt,1 + βt,2T + βt,3T
2.

Factor interpretation via loadings fj(T ):

• Level: f1(T ) = 1. A change in βt,1 shifts all maturities by the same amount (parallel
shift).

• Slope: f2(T ) = T . A change in βt,2 affects long maturities more than short ones
(rotation).

• Curvature: f3(T ) = T 2. A change in βt,3 induces hump/twist type deformations.

Cross-sectional estimation at fixed t: given observed ZCB yields {R(t, Ti)}Ni=1 on {T1, . . . Tn},
estimate βt by least squares:

βt = arg min
β∈R3

N∑
i=1

(
R(t, Ti)− (β1 + β2Ti + β3T

2
i )
)2
.

This produces a time series {βt} when repeated for t = 1, . . . ,m.

4.3 Nelson–Siegel (NS) Model

An example of a parametric model with exponential loadings, of the form

R(t, T ) = βt,1 + βt,2

(
1− e−λT

λT

)
+ βt,3

(
1− e−λT

λT
− e−λT

)
,

where λ > 0 controls the decay of the loadings. Typical interpretation is: βt,1 is long-run
level, βt,2 is slope (short-end effect), and βt,3 is curvature (medium-term hump, governed
by λ).

4.4 Dynamic two-step approach (DTSA)

We can manage risk with these models in two steps:

1. Cross-sectional step: for each day t, fit the TS model (e.g. polynomial) to observed
yields on {T1, . . . Tn} to estimate βt (risk-factor levels).

2. Time-series step: model or simulate the factor changes ∆βt. A main approach
is i.i.d. Historical Simulation on first differences: ∆βt−u = βt−u − βt−u−1, u =
0, . . . ,m − 1, treating the vector series {∆βt−u} as i.i.d. and creating scenarios,
β
(i)
t+1 = βt +∆β(i).Compare among different values of ∆β for each day to determine

VaR.
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4.5 Pricing under a shocked curve

Given a factor scenario β
(i)
t+1, you build a scenario yield curve

R(i)(t+ 1, T ) = R̂(t+ 1, T ; β
(i)
t+1),

and then reprice the bond/portfolio by discounting each cashflow using the shocked yields:

P (i)
c (t+ 1) =

K∑
k=1

C
(t+1)
k exp

(
− (T

(t+1)
k )R(i)(t+ 1, T

(t+1)
k )

)
.

For 1-day horizon, maturities shrink by 1/252, i.e. T
(t+1)
k = Tk − 1

252
, and coupons are

aligned to the new times. Thus, the 1-day revaluation is P (i)
c (t+ 1) =

k∑
j=1

c

(
Tj −

1

252

)
exp

(
−
(
Tj −

1

252

)
R(i)

(
t+ 1, Tj −

1

252

))
.

4.6 Model risk vs market risk

The notes stress that for fixed income we often work with model-implied prices Pc(t)
rather than observed prices Po(t) to avoid contaminating the risk measure with model
misspecification.

P (i)
c (t+ 1)− Po(t) =

(
P (i)
c (t+ 1)− Pc(t)

)︸ ︷︷ ︸
market risk from TS moves

+
(
Pc(t)− Po(t)

)︸ ︷︷ ︸
model pricing error

.

Since VaR is intended to measure risk from movements of the term structure, the clean
object is the model-to-model difference P

(i)
c (t+ 1)− Pc(t), not a difference that includes

the static pricing error.

5 Fixed Income Hedging

5.1 Duration and convexity for parallel shifts

For a (small) parallel change dR in yields, the bond price change is approximated by,

dB

B
≈ −DdR +

1

2
C (dR)2

, where D = − 1
B

dB
dR

, C = 1
B

d2B
dR2 .

Key special cases are:

• ZCB Z(t, T ) = e−TR(t,T ): DZ = T and CZ = T 2.
• Coupon bond viewed as a portfolio of zeros: its duration/convexity are cashflow-PV

weighted moments:

D =
n∑

i=1

wiTi, C =
n∑

i=1

wiT
2
i ,

where wi = c(Ti)Z(0,Ti)
B(0,T )

are PV weights (same weights in duration and convexity
derivations).
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5.2 Factor duration and factor convexity

When yields are written as R(t, T ; βt) =
∑J

j=1 βt,jfj(T ), factor convexity is defined with
respect to factor j as: Cj =

1
P

d2P
dβ2

j
.

For a ZCB Z(t, T ) = e−TR(t,T ) and using dR(T )/dβj ≈ fj(T ), this gives: CZ,j =

T 2
(
fj(T )

)2.
Similarly, factor duration measures first-order exposure to each factor (used to hedge
small movements in level/slope/curvature), and factor convexity extends hedging to large
moves (second-order effects).

5.3 Hedging yield-curve movements
5.3.1 Hedging a parallel shift using one ZCB

This is an example of a duration hedge. Let Bc be the current value of the bond (or bond
portfolio) you want to hedge, and use one ZCB Z(0, T ) with duration Dz.
Define the hedged portfolio V = Bc + k Z(0, T ). Using dBc ≈ −DBc dR and dZ ≈
−Dz Z dR, the first-order neutrality condition dV ≈ 0 implies k = − DBc

Dz Z(0,T )
.

5.3.2 Hedging larger parallel shifts using two ZCBs

This is a duration + convexity hedge. To immunize against both the first- and second-
order terms in dR, use two ZCBs with prices P1, P2, durations D1, D2, and convexities
C1, C2.
Let k1, k2 be positions and V = Bc + k1P1 + k2P2. Expanding to second order:

dV = −(DBc + k1D1P1 + k2D2P2) dR +
1

2
(C Bc + k1C1P1 + k2C2P2) dR

2.

Setting the coefficients of dR and dR2 to zero gives the system

k1D1P1 + k2D2P2 = −DBc, k1C1P1 + k2C2P2 = −C Bc,

with closed-form solution:

k1 = −Bc

P1

( DC2 − C D2

D1C2 − C1D2

)
, k2 = −Bc

P2

( DC1 − C D1

D2C1 − C2D1

)
.

5.3.3 Hedging non-parallel yield-curve movements

We use factor durations for this. Instead of assuming a parallel shift, we model the yield
curve with a small number of factors:

R(t, T, βt) =
3∑

j=1

βj(t) fj(T ) = β1(t) · 1 + β2(t) · T + β3(t) · T 2,

where f1(T ) = 1 (level loading), f2(T ) = T (slope loading), f3(T ) = T 2 (curvature
loading).
For asset price P , the factor duration w.r.t. βj is Dj = − 1

P
dP
dβj

.
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Since dR(t,T,βt)
dβj

= fj(T ), we have

Dj = − 1

P

dP

dR

dR

dβj

= D · fj(T ),

where D is the traditional duration (this is the chain rule result).
Because D = T for a ZCB: Dlevel = T · 1 = T , Dslope = T · T = T 2, Dcurv = T · T 2 = T 3.

5.4 Hedging multiple factors

Suppose your target portfolio has price P and you want to neutralize exposure to two
factors (e.g. level and slope, or level and curvature). Pick two ZCB hedging instruments:
a short one with price P S

z and a long one with price PL
z . Hold positions kS, kL so the new

portfolio is V = P + kSP
S
z + kLP

L
z .

For two factors (call them factor 1 and factor 2), first-order neutrality requires: (just
differentiating)

kSD
S
z,1P

S
z + kLD

L
z,1P

L
z = −D1P, kSD

S
z,2P

S
z + kLD

L
z,2P

L
z = −D2P.

The closed-form solution provided for the level and slope example is:

kS = − P

P S
z

( D1D
L
z,2 −D2D

L
z,1

DS
z,1D

L
z,2 −DS

z,2D
L
z,1

)
, kL = − P

PL
z

( D1D
S
z,2 −D2D

S
z,1

DL
z,1D

S
z,2 −DL

z,2D
S
z,1

)
,

and the interpretation is that investing (kS, kL) hedges the portfolio against any small
combination of those two factor moves.
If we define value weights w1 = kSP

S
z

P
, w2 = kLP

L
z

P
, the system can also be written more

simply as:
w1D

S
Lev + w2D

L
Lev = −DLev,PF

w1D
S
Slope + w2D

L
Slope = −DSlope,PF

where in this particular example factor 1 is level and factor 2 is slope.

5.5 Factor convexity

To handle large moves in multiple factors, define factor convexity with respect to factor
j: Cj =

1
P

d2P
dβ2

j
. This provides second-order sensitivity to factor moves.

For a ZCB Z(t, Ti) = e−R(t,Ti)Ti , the slides show:

Cz,j =
1

Z(t, Ti)

d2Z(t, Ti)

dβ2
j

= T 2
i fj(Ti)

2.

Hedging large movements in multiple factors typically requires more instruments because
each factor adds first- and second-order conditions.)

5.6 Bond risk vs. stock risk

For stocks, the natural risk factor is the return (and correlations across stocks). Pricing
is trivial: Pt = St.
For bonds, the key risk is the term structure (yield curve). Even if a ZCB yield is not
directly observed, we model R(t, T ) via a low-dimensional factor structure and manage
risk via factor durations/convexities and hedging with ZCBs.
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6 Option Pricing Models

Let ST denote the underlying asset price at maturity T . The European Call Payoff is
CT = max(ST−K, 0); the European Put Payoff is PT = max(K−ST , 0).European options
can only be exercised at maturity T , and American options can be exercised at any time
prior to T .
For European options on a non-dividend-paying stock, we have put-call parity: ct +
Ke−rT = pt + St. This identity follows from no-arbitrage arguments and must hold for
any t < T . Consequences of this are:

• Knowing the call price implies the put price and vice versa.
• European calls and puts have symmetric volatility exposure.

6.1 Risk-neutral valuation principle

The fundamental pricing rule for derivatives is:
Pt = e−rTEQ[g(ST )]

where Q is the risk-neutral probability measure, g(ST ) is the payoff function, and r is the
expected return of the asset under Q.
Extra: Investors do not price risk directly; all risk premia are embedded in the change of
measure from the physical measure P to Q.

6.2 Black–Scholes (BS) model

Assumptions are: continuous trading; no arbitrage; constant volatility σ; constant risk-
free rate r; lognormal stock prices.
Dynamics under Q follow, ST = Ste

x∗ , x∗ ∼ N
(
(r − 1

2
σ2)T, σ2T

)
BS prices of European call/put are:

ct = StN(d1)−Ke−rTN(d2)

pt = Ke−rTN(−d2)− StN(−d1)

where
d1 =

ln(St/K) + (r + 1
2
σ2)T

σ
√
T

, d2 = d1 − σ
√
T

6.2.1 Integral representation of option prices

For any payoff g(ST ):
pt = e−rT

∫ ∞

−∞
g(Ste

x∗
)f(x∗)dx∗

where f(x∗) is the Gaussian density of x∗.
Useful Gaussian identities (from slides):∫ ∞

a

eβxfµ,σ2(x) dx = exp
(
βµ+ 1

2
β2σ2

)
Φ

(
µ+ βσ2 − a

σ

)

E[eβX ] = exp
(
βµ+ 1

2
β2σ2

)
11
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6.3 Implied volatility

Implied volatility σimp solves the equation: BS(St, K, r, T, σimp) = Market Price.
BS price is increasing in σ, so ∂c

∂σ
> 0.

Due to volatility skew, OTM puts typically have higher implied vol. This violates
constant-σ assumption of BS, and reflects crash risk and fat tails.

6.4 Binomial Tree Model

This is a discrete-time approximation of BS. For time step ∆t: u = eσ
√
∆t, d = e−σ

√
∆t =

1
u
.

The risk-neutral probability is p =
Rf−d

u−d
= er∆t−d

u−d
.

Even though the tree is discrete, the interest rate is continuously compounded in the
course, so the gross risk-free return over ∆t is er∆t.

6.4.1 Binomial pricing algorithm (backward induction)

1. Construct the stock price tree. Start at S0 and next prices are S1,1 = u · S0,
S1,0 = d · S0, and then S2,2 = u2S0, S2,1 = udS0, S2,0 = d2S0 etc.

2. Compute the terminal option payoffs; at time T , VT = payoff(ST ).
3. Step backwards using:

Vt = e−r∆t
(
pVu + (1− p)Vd

)
For American options, use Vt = max(exercise value, Vcont).
For example, from the practice final, for the European call at maturity T (previous
step), the call payoff is C4,j = max(S4,j −K, 0), j = 0, . . . , 4,. Working backwards from
maturity, the option price by risk-neutral valuation at each node is:
Ci,j = e−r∆t [pCi+1,j+1 + (1− p)Ci+1,j].
For at-the-money options (K = S0), the model becomes simpler. The tree becomes
symmetric; many terminal nodes have zero payoff, and backward induction is simplified
considerably.

6.5 American call option in the binomial model

The binomial pricing procedure for an American option is identical to that of a European
option, except that at each node the holder has the right to exercise the option early.
Therefore, at every node we must compare the value of continuing to hold the option
with the value obtained from immediate exercise.
Consider a 6-month call option with maturity T = 0.5 years, strike K = S0, written
on a non-dividend-paying stock. We use a 4-period binomial tree (n = 4), so that
∆t = T

n
= 0.125.

The gross risk-free return per step (with continuously compounded rate r) is Rf = er∆t.
Using the Cox–Ross–Rubinstein (CRR) parameterization, the up and down factors are

u = eσ
√
∆t, d = e−σ

√
∆t =

1

u
.

12
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The risk-neutral probability of an up move is

p = πQ
u =

Rf − d

u− d
=

er∆t − d

u− d
,

with 1− p the probability of a down move.
Let Si,j denote the stock price at time step i after j up moves. Then

Si,j = S0u
jd i−j, i = 0, 1, 2, 3, 4, j = 0, . . . , i.

At maturity (i = 4, terminal payoff) , the American call payoff equals the European
payoff:

C4,j = max(S4,j −K, 0), j = 0, . . . , 4.

At each node (i, j) for i = 3, 2, 1, 0, compute:

• Continuation value: Ccont
i,j = e−r∆t [pCi+1,j+1 + (1− p)Ci+1,j].

• Immediate exercise value: Cex
i,j = max(Si,j −K, 0).

The American option value at node (i, j) is then Ci,j = max
(
Cex

i,j, C
cont
i,j

)
.

This recursion is applied backward through the tree until reaching the initial node (0, 0),
whose value C0,0 is the American call price.
For a non-dividend-paying stock, it is never optimal to exercise an American call option
early. Exercising early forfeits the remaining time value of the option while providing no
benefit from early stock ownership.
Therefore, at every node, Ccont

i,j ≥ Cex
i,j, and the American call price coincides with the

European call price: CAmerican
0,0 = CEuropean

0,0 .

7 Options Risk Management

7.1 Risk Factors for Options

The price of an option is a function of three fundamental risk factors: the underlying
asset price St; the volatility σ; the risk-free interest rate rf .

7.2 Option delta (linear approximation)

The delta of an option measures the sensitivity of the option price to changes in the
underlying asset price: δ = ∂V

∂S
.

Using a first-order Taylor expansion around St:

V (St+1) ≈ V (St) + δ(St+1 − St).

Defining the (log) return on the underlying as Rt+1 ≈ St+1−St

St
, the dollar change in the

option value is approximated by:

∆VPF,t+1 ≈ δStRt+1.

An option portfolio behaves approximately like a stock portfolio holding δ shares of the
underlying.

13



Krish Nigam (krish.nigam@princeton.edu) FINANCIAL RISK MANAGEMENT

7.3 Delta-normal VaR

Assuming conditional normality of returns, Rt+1 ∼ N(0, σ2
t+1), the variance of the option

portfolio change is:
Var(∆VPF,t+1) ≈ δ2S2

t σ
2
t+1.

The dollar VaR at confidence level p is:

VaRp
t+1 = −|δ|Stσt+1Φ

−1(p).

For a portfolio with m options, ∆V ≈ (mδ)StRt+1, and similarly for the VaR, the δ factor
is multiplied by m in the formula above.
This linear approximation works well only for small price changes and is unreliable for
options near-the-money or during periods of high volatility.

7.4 Option gamma (quadratic approximation)

To capture curvature in option prices, we include the second derivative: γ = ∂2V
∂S2 .

A second-order Taylor expansion gives:

V (St+1) ≈ V (St) + δ(St+1 − St) +
1

2
γ(St+1 − St)

2.

In terms of returns:
∆VPF,t+1 ≈ δStRt+1 +

1

2
γS2

tR
2
t+1.

Gamma is largest when the option is at-the-money; delta-only risk models are particularly
misleading for ATM options.

7.5 Delta-Gamma VaR

Because ∆VPF is now nonlinear in returns, no closed-form VaR exists. Instead we:

1. Simulate M scenarios of K-day returns {R̂K,h}Mh=1 using HS or Monte Carlo.

2. Compute hypothetical portfolio changes, ∆V̂PF,h = δStR̂K,h +
1
2
γS2

t R̂
2
K,h.

3. Estimate VaR as the empirical percentile:

VaRp
t+1:t+K = −Percentile

(
{∆V̂PF,h}Mh=1, 100p

)
.

Limitation: Delta–gamma models still rely on local Taylor approximations and ignore
higher-order effects.

7.6 Full valuation method

Full valuation avoids Taylor approximations entirely. The algorithm is:

1. Simulate future returns {R̂K,h} using HS or Monte Carlo.

2. Construct future prices: ŜK,h = Ste
R̂K,h .

3. Adjust time to maturity for calendar time decay: T̃new = T̃ − τ , where τ is the risk
horizon in calendar days.

14
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4. Reprice the option using the pricing model (e.g. BS):

∆V̂PF,h = m
[
c(ŜK,h, rf , X, T̃new, σ)− cmkt

]
.

5. Compute VaR as:

VaRp
t+1:t+K = −Percentile

(
{∆V̂PF,h}Mh=1, 100p

)
.

Full valuation is preferred because it has no linear or quadratic approximation, captures
all Greeks, and is accurate for large moves and long horizons.

7.6.1 Full valuation with multiple risk factors

When multiple risk factors matter (e.g. St, σt, rt), each must be jointly simulated:

∆V̂PF,h = c(Ŝh, r̂f,h, X, T̃ − τ, σ̂h)− cmkt.

The joint dependence (correlation) among risk factors must be preserved, either through
Historical Simulation or multivariate Monte Carlo.
Overall, full valuation is computationally intensive but conceptually simple and is the
benchmark method for option risk management in the course.

8 Backtesting & Stress Testing

8.1 VaR exceedances and the hit sequence

Suppose we compute a one–day ahead VaR forecast VaRp
t+1 at confidence level p. Let

RPF,t+1 denote the realized portfolio return.
Define the hit sequence:

It+1 =

{
1, if RPF,t+1 < −VaRp

t+1 (VaR violation)
0, otherwise

Interpretation:

• It+1 = 1 means the realized loss exceeded the predicted VaR.
• A VaR model at level p promises that violations occur only p× 100% of the time.

If the VaR model is correctly specified, violations should occur with probability p, and
be independent over time.
Formally, the null hypothesis would be H0: It+1 ∼i.i.d. Bernoulli(p).
If violations cluster or occur too often (or too rarely), the VaR model is misspecified.

8.2 Unconditional coverage test (Kupiec Test)

This test checks whether the frequency of violations matches the nominal level p.
Let T1 = the number of violations; T0 = = the number of non-violations; T = T0 + T1;
π̂ = T1/T = the observed violation frequency.
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Likelihood under the null (π = p) is, L(p) = (1− p)T0pT1 .
Likelihood under the alternative (π = π̂) is, L(π̂) = (1− π̂)T0 π̂T1 .
Likelihood ratio statistic:

LRuc = −2 ln

(
L(p)

L(π̂)

)
= −2 ln

[
(1− p)T0pT1

(1− π̂)T0 π̂T1

]
Under H0, LRuc ∼ χ2(1), so the decision rule is: if LRuc exceeds the critical value (e.g.
3.84 at 5%), reject the VaR model.

8.3 Importance of stress testing

VaR and ES are probabilistic risk measures:

• VaR answers: “What loss will I exceed only p% of the time?”
• ES answers: “What is the expected loss given a VaR breach?”

This is while “standard” stress testing often does not assign a probability to the scenario.
Historical data, however, is typically short, may not contain extreme market crashes, and
may underestimate future tail risk.
Stress testing is important because standard risk models are typically estimated using rel-
atively short historical samples, and those samples may not contain the kinds of extreme
events that could plausibly occur in the future (e.g. crashes).
As a result, a VaR model that looks “fine” in normal times can still be fragile when
market conditions change sharply.
Stress testing addresses this by artificially generating extreme scenarios for the main
risk factors driving portfolio returns and then evaluating the model’s output under those
stressed inputs. In other words, we “stress the model” by exposing it to data different
from the data used to specify/estimate it.
Therefore, stress testing is mainly a tool for robustness: it helps the risk manager un-
derstand how bad things could get if markets move in extreme ways, even if the model’s
estimated probability of such moves is small or uncertain.
Key limitations of standard stress testing:

• Stress scenarios usually have no probability attached
• Therefore, results cannot be directly compared to VaR or ES
• This makes portfolio rebalancing decisions ambiguous

8.4 Coherent Stress Testing

This is a model-based approach. To make stress testing compatible with VaR/ES, we
must assign probabilities. Let f(·) = the distribution implied by the risk model, and
fstress(·) = the distribution representing a stress scenario.
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Assign probability α to the stress scenario. Define the combined distribution:

fcomb(x) =

{
f(x), with probability 1− α

fstress(x), with probability α

The simulation procedure is as follows:

1. Draw U ∼ Uniform(0, 1)

2. If U < α, draw from fstress

3. Otherwise, draw from f

Once simulated, we compute VaR or ES from draws of fcomb, and the resulting risk
measure incorporates extreme scenarios coherently.
As a result, stress scenarios are now embedded within a probabilistic framework.
Advantages are that VaR/ES increase smoothly as α increases; the model can be back-
tested using fcomb; and portfolio decisions become well-defined.

8.4.1 Choosing Stress Scenarios

Stress scenarios should reflect:

1. Changed probabilities: extreme events more likely than history suggests.
2. New shocks: events that have never occurred but could.
3. Parameter instability: volatility, correlation, or tail behavior changing.
4. Structural breaks: breakdown of the model itself.

Historical crises are often used as inspiration. Crises may have short-lived impacts (mar-
ket corrections), or long-lasting effects (regime shifts).

8.5 Example stress test for a VaR system

One practical stress test is a risk-factor shock scenario:

1. Choose the key risk factors that drive the portfolio’s P&L (e.g. equity index return,
yield curve level/slope, FX).

2. Design an extreme scenario by imposing unusually large shocks to these factors—
either by:
• creating shocks that are more likely than the historical database suggests

(“change probabilities”),
• creating shocks that have never occurred but could (“new shocks”),
• allowing parameters/correlations to change (“change in parameters”),
• or reflecting potential structural breaks (“change in model structure”).

3. Revalue the portfolio under the stress scenario (full valuation or approximation)
and compute the implied loss.

4. Compare stressed losses to the VaR produced by the normal risk model. If stressed
losses are unacceptably large relative to limits/capital, the portfolio can be rebal-
anced.
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9 Full valuation method example

We provide an example of using full valuation to calculate the risk of a portfolio long 10
units of a put option with current price pt, assuming the underlying return is the only
risk factor.
The lecture notes define full valuation as a two-step procedure:

1. Simulate scenarios for future hypothetical underlying asset prices.
2. Use an option pricing model to compute the future hypothetical option price for

each scenario.

This approach is “precise” because it does not rely on Taylor (delta/gamma) approxima-
tions, but it is computationally heavier.

9.1.1 Generate scenarios for tomorrow’s underlying price

Let the risk horizon be 1 day (so K = 1 trading day). We need a scenario set {S(h)
t+1}Mh=1

(for a M day window).
Because the underlying is the only risk factor, we only simulate (or resample) the 1-day
return.
A standard way is our ‘favourite’ Historical Simulation on the underlying return:

• compute historical returns Rt−ℓ for ℓ = 1, . . . ,M

• create hypothetical prices with log-returns S
(h)
t+1 = Ste

r(h) for all historical returns
r(h) = {Rt−l}Ml=1.

(Equivalently, we could simulate from an assumed model for the physical distribution of
returns, but HS is the simplest “full valuation via HS/MC” method in the notes.)

9.1.2 Reprice the put option under each scenario

For each scenario price S
(h)
t+1, compute the put price using the pricing model.

Using Black–Scholes, the put price at time t+1 is: p(h)t+1 = pBS

(
S
(h)
t+1, K, T̃ , rf , σ

)
, where

the remaining maturity must be reduced by the passage of time: T̃ = T − τ, and τ is the
risk horizon in calendar time (for 1 trading day, typically τ ≈ 1/252 in years).

9.1.3 Build the P&L distribution for the portfolio (10 puts)

The portfolio is long 10 puts, so under scenario h the dollar P&L over the 1-day horizon
is: ∆V

(h)
t+1 = 10

(
p
(h)
t+1 − pt

)
.

This is full valuation: compute hypothetical option values for each hypothetical underly-
ing value, then compute value changes.

Collect all scenario P&Ls: {∆V
(h)
t+1}Mh=1.
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9.1.4 Compute VaRp
t+1 from the scenario P&L distribution

For confidence level p (e.g. p = 1%), the 1-day VaR is the negative p-quantile of the P&L
distribution:

VaRp
t+1 = −Quantilep

(
{∆V

(h)
t+1}Mh=1

)
.

10 Historical simulation risk for portfolio
• Stocks: model risk through stock returns (or log-returns).
• Bonds: model risk through yield curve movements represented by a term structure

factor model (e.g. polynomial term structure).

Then, for each historical scenario, we:

1. shock the risk factors using their historical changes, and
2. reprice each asset (stocks trivially, bonds via discounting cashflows under the shocked

curve), producing a scenario P&L distribution.

This is “traditional HS” because the scenarios are directly constructed from historical
observations, rather than from a parametric model.

10.1.1 Identify the risk factors

Assume the portfolio value at time t is Vt =
∑ns

i=1 wiSi,t +
∑nb

j=1 qjBj,t, where Si,t are
stock prices and Bj,t are bond prices.
For each stock i: risk factor: the return Ri,t+1 (or log-return ∆ lnSi,t+1).
Bond prices depend on the term structureR(t, T ). We represent the curve by a polynomial
factor model: R(t, T ) = β1,t + β2,tT + β3,tT

2 + β4,tT
3 (or sometimes a 3-factor version).

So the bond risk factors are the curve movements (the time series of β’s), i.e.: ∆βk,t =
βk,t − βk,t−1, k = 1, . . . , 4.

10.1.2 Database required

To implement HS you need a historical time series (daily) of:

1. Stock prices (or returns) for each stock in the portfolio.
2. Yield curve data: observed yields across maturities each day (*e.g.* 1M, 3M, 6M,

1Y, 2Y,...), so that you can fit the polynomial curve and estimate βt each day via
cross-sectional OLS.

3. Bond contract details: coupon rate, payment frequency, maturity, face value.

10.1.3 Historical simulation procedure for 1-day VaR

Let the HS window length be N days (e.g. 250). At time t: we construct historical
shocks.
For stocks, compute historical stock shocks (log-return form is common): ∆ lnSi,h =
ln(Si,h/Si,h−1), h = t−N + 1, . . . , t.
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For yield curve, estimate βh each day from yields, then compute factor shocks: ∆βk,h =
βk,h − βk,h−1.

This creates a joint scenario vector each day:

(∆ lnS1,h, . . . ,∆ lnSns,h,∆β1,h, . . . ,∆β4,h) .

Traditional HS uses these historical vectors directly as scenarios, preserving the historical
dependence structure (including correlations) between stocks and rates.
Next, apply shocks to today’s state to get tomorrow scenarios For each scenario h:

Stock scenario prices: S(h)
i,t+1 = Si,t exp(∆ lnSi,h).

Yield curve scenario: β(h)
k,t+1 = βk,t +∆βk,h.

So the shocked curve is: R(h)(t+ 1, T ) = β
(h)
1,t+1 + β

(h)
2,t+1T + β

(h)
3,t+1T

2 + β
(h)
4,t+1T

3.

Then, full revaluation of assets under each scenario:

• Stocks: P (h)
stock,i = S

(h)
i,t+1.

• Bonds: price by discounted cash flows using the shocked term structure: B
(h)
j,t+1 =∑

u CFj,u exp{−Tj,u R
(h)(t+ 1, Tj,u)}.

Scenario portfolio P&L distribution: compute the portfolio value in each scenario: V (h)
t+1 =∑

i wiS
(h)
i,t+1 +

∑
j qjB

(h)
j,t+1.

Then scenario P&L: ∆V (h) = V
(h)
t+1 − Vt.

Compute risk measure (VaR / ES): for a p-level VaR (e.g. p = 1%):
VaRp = −Quantilep

(
{∆V (h)}Nh=1

)
.

11 Shocks

A shock is a historical one-period change in a risk factor; in Historical Simulation, we
apply historical shocks to today’s factor values, reprice the portolio under each shocked
scenario, and use the resulting P&L distribution to compute VaR/ES.
A shock is a change in a risk factor over one day (or whatever horizon you’re simulating).

11.1.1 Stock example

Today’s stock price is St. Pick a historical day h and use its log-return shock ∆ lnSh =

ln(Sh/Sh−1). Then, the scenario price is: S(h)
t+1 = Ste

∆lnSh .
The interpretation of this is - “what if tomorrow the stock moves like it did on day h in
the past?”.

11.1.2 Bond (yield curve) example

Suppose your curve is described by factors βt. A historical factor shock is∆βh = βh−βh−1,
and the scenario factor is thus β(h)

t+1 = βt +∆βh.
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For the stock case, repricing the stock is trivial as it is just P (h)
stock = S

(h)
t+1, but for bonds,

if the curve changes, the discount rates change, so the bond price changes.
If a bond pays cashflows CFk at maturities Tk, then under scenario h,

B
(h)
t+1 =

∑
k

CFke
−TkR

(h)(t+1,Tk).

11.1.3 Producing a scenario P&L distribution

For each scenario h, you now have a scenario portfolio value V (h)
t+1, then ∆V (h) = V

(h)
t+1−Vt.

Doing this for many historical scenarios gives a whole set of P&Ls: {∆V (h)}Nh=1, which is
the scenario P&L distribution used to compute VaR/ES.
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